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Urokinase-type plasminogen activator (uPA) plays an important role in the regulation of diverse physiologic and pathologic
processes. Experimental research has shown that elevated uPA expression is associated with cancer progression, metastasis, and
shortened survival in patients, whereas suppression of proteolytic activity of uPA leads to evident decrease of metastasis.Therefore,
uPA has been considered as a promisingmolecular target for development of anticancer drugs.The present study sets out to develop
the new selective uPA inhibitors using computer-aided structural based drug design methods. Investigation involves the following
stages: computer modeling of the protein active site, development and validation of computer molecular modeling methods:
docking (SOL program), postprocessing (DISCORE program), direct generalized docking (FLM program), and the application
of the quantum chemical calculations (MOPAC package), search of uPA inhibitors among molecules from databases of ready-
made compounds to find new uPA inhibitors, and design of new chemical structures and their optimization and experimental
examination. On the basis of known uPA inhibitors and modeling results, 18 new compounds have been designed, calculated using
programs mentioned above, synthesized, and tested in vitro. Eight of them display inhibitory activity and two of them display
activity about 10𝜇M.

1. Introduction: Role and Structure
of Urokinase-Type Plasminogen
Activator (uPA)

The key principle of the rational drug development is to
determine the compound, which blocks the functioning pro-
tein responsible for the progression of the disease. Thus, the
central problem of the new drug development is to find the
organic compound (the inhibitor) capable to bind selectively
to a given target-protein. At present, search of new inhibitors
is a crucial step of drug discovery and it takes about 50% of
the total time of new remedies development. For a long time,

experimental screening of hundreds of thousands of organic
test compounds from chemical libraries was the main search
strategy of new drugs design. However, lately molecular
modeling computational methods are getting involved in
the work [1], and they can significantly reduce the cost and
material resources.

The present paper is devoted to the detailed account of
the application of molecular modeling to search and design
of the novel antitumor drug on the base of uPA proteolytic
site inhibitors.

The data accumulated for the last years show that uPA
system has a lot of functions in the evolution malignant
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tumors, including the angiogenesis regulation (including the
tumor angiogenesis), cell division, adhesion, and migration
of the malignant cells and tumor metastasis [2–4]. Normally
injury stimulates the local urokinase (uPA) expression [5].
That makes sense because the vessels are traumatized, and
haemorrhage and blood clot organization happen upon
damages. For this reason, it was supposed that urokinase
is a key element in the vessel and tissues remodeling and
regeneration processes. Experimental data also suggest uroki-
nase participation in the regulation of the cell migration and
proliferation [2, 4].

Pathogenic processes use the same molecules and mech-
anisms which operate under normal conditions. Main tumor
responsible mechanisms are cell proliferation and migration.
Vessel growth is the necessary condition for the tumor
growth. The uPA test is considered now as one of promising
markers for the breast cancer prognosis and treatment.

Due to urokinase participation in tumor development its
components can be considered as an appropriate target for
anticancer therapy [6]. Several studies indicate the potential
efficiency of the therapeutic approaches targeted inhibition
of the uPA system components expression or inhibition of the
uPA activity itself or inhibition of its interactionwith receptor
with the purpose of suppressing of the tumor growth [7–9].

The uPA is a 53 kDa multidomain glycoprotein of 411
residues. The N-terminal (A-chain) contains the kringle
domain and the epidermal growth factor (EGF)-like domain;
the latter responsible for the binding to uPAR, whereas the C-
terminal (B-chain) is composed of two subdomains formed
by six beta strands folded in an antiparallel manner and
connected by twist or helical regions.The active site is located
at the interface between the two subdomains, and consists of
the catalytic triad of His57, Asp102, and Ser195 residues [10].

At present, there is a large amount of data on the mech-
anism of urokinase action on angiogenesis and remodeling,
urokinase and its receptor atomic structures, and knowledge
of the mechanism of urokinase and the receptor interaction.
So, all necessary conditions are presented for considering uPA
as a challenging target for the therapeutic action of a new
antitumor drug, and computer molecular modeling tech-
niques can be applied for development of new compounds
that suppressed certain functions of uPA.

Function and activity regulation of the proteolytic
domain of uPA are known better than the functions of other
uPAdomains. Importance of proteolytic activity of uPA in the
tumor growth and metastasis was demonstrated repeatedly
[2, 3, 11–13]. Thereby development of uPA proteolytic activity
inhibitors is presently one of themost actual andwell-defined
problems.

The natural urokinase plasminogen activator (uPA) and
tissue plasminogen activator (tPA) inhibitors in human
organism are PAI-1 and PAI-2 proteins, which form covalent
bonds with uPA and tPA after binding and inactivate uPA and
tPA irreversibly, which results in the fibrinolysis suppression
due to decrease of plasminogen activity. This is the way
hemorrhage by fibrinolysis in the organism is prevented.

The first evidence that disclosed the possibility of arrest-
ing tumor progression by means of inhibitors of the uPA
activity was achieved with anti-uPA antibodies [14, 15].

Subsequently, the efforts in this field have been directed to
the development of small-molecule synthetic uPA inhibitors
with appropriate potency, selectivity, and pharmacokinetic
properties for use as anticancer drugs.

Specificity of binding toward basic substrates is largely
determined by the residue Asp189, located at the base of
the primary anchor site for substrates, termed specificity
pocket S1 [16]. The crystal structure of uPA catalytic domain
displays a trypsin-like topology in which the Asp189 is
retained, conferring to the S1 site an affinity for positively
charged Arg and Lys residues [10]. Therefore, the majority of
synthetic uPA inhibitors, conceived so far, share a common
structural feature consisting of a mono- or biaromatic moiety
substituted with an amidino or guanidino function, acting as
arginine mimetic. However, a strong limitation in the choice
of feasible compounds is represented by the necessity to
inhibit uPAwithout affecting the activity of other trypsin-like
serine proteases, and especially tPA and plasmin, essential for
the fibrinolytic processes.

Earliest works were recognized as selective uPA inhi-
bitors, the para-substituted benzamidine derivatives, the 4-
chloro- and 4-trifluoromethylphenylguanidines, and ami-
loride, but none of them was endowed of high potency and
all 𝐾
𝑖
values fell within the micromolar range [17–19]. The

research of more powerful compounds led to the synthesis
of two 4-substituted benzo[b]thiophene-2-carboxamidines,
B428 and B623, with 𝐾

𝑖
of 0.53 and 0.16 𝜇M, respectively

[20]. In the past few years, a number of novel small-
molecule uPA inhibitors have been proposed, including the
4-ami-noarylguanidine and 4-aminobenzamidine deriva-
tives, 2-pyridinylguanidines, 1-isoquinolinylguanidines and
1-(7-sulfonamidoisoquinolinyl)guanidines, mexiletine deriv-
atives, the 4-chloro-3-alkoxyisocoumarins containing a ter-
minal bromine, the 4-oxazolidinone analogue UK122, 5-
thiomethylthiopheneamidine derivatives, the N-(1-adaman-
tyl)-N󸀠-(4-guanidinobenzyl)urea (WX-293T), andWX-UK1,
a derivative of 3-amidinophenylalanine [21–31]. However,
among these inhibitors, only WX-UK1 (WILEX, Munich,
Germany) entered clinical development, showing a𝐾

𝑖
against

human uPA of 0.6 𝜇M. SinceWX-UK1 is not absorbed orally,
more recently,Wilex developed an oral prodrug,WX-671, for
the systemic delivery of the active WX-UK1. This prodrug
is currently under evaluation in two independent studies of
phase II clinical trials in combination with classical cytotoxic
treatments to estimate its efficiency [6]. Nevertheless, there is
no drug based on the uPA inhibitor to the date, integrated in
the clinical practice, so the design of such inhibitors is now
an actual problem.

The present paper summarizes the experience of the
rational design of new synthetic low-molecular uPA inhib-
itors using computer molecular modeling techniques. This
work also describes the technique of the target-protein
(urokinase)molecularmodel building and the usedmodeling
techniques: docking for ligand positioning into the active site
of the target-protein by the global protein-ligand potential
energy minimum search, postprocessing for refinement of
the free binding energy of the protein-ligand system, general-
ized direct docking for refinement of the free binding energy
of the protein-ligand system by including in calculations



BioMed Research International 3

not only the global minimum, but also the nearby local
energy minima and by computing not only the enthalpy
component but also the entropy component of the free
binding energy accounting the oscillations of the ligand
atoms, and the quantum chemistry techniques for the more
accurate calculation of the protein-ligand interaction energy.
This paper also presents the results of validation of few
techniques for native urokinase ligands, describes the virtual
screening of databases of ready-made compounds for uPA
inhibitors, and depicts the results of the new uPA inhibitors
development.

2. Methods

2.1. Molecular Model of Urokinase Target-Protein. The input
data to begin the drug design using molecular modeling
methods are the three-dimensional coordinates of the tar-
geted protein. More than 60 structures contained one or
another uPA domain were found in the Protein Data Bank
(PDB) [32] database as the result of the respective search.

Among these 60 structures, 45 ones contain uPA bound
with direct reversible noncovalent inhibitors in its proteolytic
active site. All these structures have rather good quality
with resolution not worse than 3.1 Å. Most structures have
resolution better than 2 Å. The structures of inhibitors are
rather different representing different classes of chemical
compounds, and there are no metal atoms nearby the active
site. Three binding pockets can be distinguished in the
proteolytic active site: S1, S2, and S3. Analysis of positions of
uPA inhibitors crystallized in the complex with the protein
demonstrates that the pocket S1 provides the main contri-
bution to the binding, but the interactions with other pockets
play also important role.The pockets and the full complex are
demonstrated in Figure 1 for the crystal structure 1vj9 (PDB
ID) from Protein Data Bank.

The availability of this data is very favorable factor for
the rational drug design of the new uPA inhibitors using
the molecular modeling methods. On the basis of existing
crystal structures, the molecular model of the protein was
build [33]. Crystal structures taken fromPDBusually have no
information about positions of the light atoms (hydrogens),
so hydrogens were added to the protein structure before atom
typification and grid building.This procedure was performed
with APLITE program [34], which was also employed for
the protein atom typification and the determination of the
partial atomic charges in respect to MMFF94 force field [35–
39]. Then, we build the potential grid in the predetermined
docking area corresponding to the proteolytic active site of
the uPA structure using SOLGRID program [34, 40, 41].This
area is a cube with the edge of 22 Å, indicating the rather large
docking area which restricts the positioning space near the
protein, but does not restrict the ligand movements in the
active site which allows to find the energy global minimum
using docking program. Overall, 45 uPA complexes crystal-
lized with inhibitors were selected and prepared for docking.
These structures were used as for docking quality testing, as
for the further work with new inhibitors.

2.2. Modelling Methods

Docking: The SOL Program. Docking is currently the most
common method of virtual screening. Docking is a lig-
and position search in a protein active site through global
optimization (minimization) of the protein-ligand potential
energy as a function of the ligand position. The ligand is a
small molecule, which supposedly can inhibit the protein.
As a result of docking, the ligand binding position and the
protein-ligand binding free energy (which is correlated with
the ligand inhibition ability) are predicted. We used the orig-
inal SOL program [34, 40, 41] in this work.The SOL program
finds global minimum of protein-ligand potential energy
function by genetic algorithm. There are some assumptions
in the SOL program to speed up calculations.

(i) The protein is considered to be rigid: there are no
protein degrees of freedom in the potential energy
function variables. But a broadening of the protein
atomic potentials [40] with the typical value of 0.3-
0.4 Å is used to take partially into account the protein
atoms mobility.

(ii) The ligand position search is performed inside the
docking cube, covering the protein active site.

(iii) The desolvation energy is calculated by simplified
generalized Born model [42] and is included in the
grid potentials.

(iv) Energy of the protein-ligand interactions is calculated
using the uniform space grid of the protein atoms
potentials. This grid of the protein atoms poten-
tials (Coulomb and Van der Waals potentials from
MMFF94 force field with broadening and desolvation
potential) is precalculated by SOLGRID program.

(v) There is no local energy optimization during the
ligand position search.

(vi) The ligand bond length and bond angles are kept
fixed during the ligand position search; only torsion
rotations around single acyclic bonds are allowed.
Also, the ligand can be rotated and translated as a
whole.

(vii) Scoring function, which is an estimation of the
protein-ligand binding free energy, is a weighted sum
of the protein-ligand interactions energy components
(Coulomb, Van der Waals and desolvation interac-
tions) and entropy component, which is estimated
by number of the ligand torsions. Coefficients in this
sum have been adjusted to get best fitting of the
calculated binding energy to experimental data.

The SOL program validation soon after its development
[34, 43] has shown high docking quality: good rediscovery of
a ligand native position for 80 protein-ligand complexes and
good detection of active inhibitors among large set of inactive
ligands by sorting by scoring function.

The SOL program was also tested in the Community
Structure-Activity Resource (CSAR) competition in order to
obtain an independent docking quality assessment. During
this competition, the structures of proteins and ligands
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Figure 1: Complex 1VJ9 active site with location of the S1, S2, and S3 pockets indicated (program Molred) (a) and the full structure of the
1VJ9 complex (b).

with unrevealed experimental native position and inhibition
activity were given to all participants. Then, the participants
tried to predict protein-ligand binding poses and sort ligands
by their inhibitory activity. The SOL program demonstrated
good ligand positioning quality (near resemblance of the
predicted and native ligand poses) in most cases [34]: there
were 6 proteins (Chk1, Erk2, LpxC, urokinase, CDK2, and
CDK2-CYCLYNA) and 91 ligands in the competition, and 56
ligands of them were positioned by the SOL program with
rootmean square deviation (RMSD) over all the ligand atoms
from the native position less than 2 Å and 65 ligands with
RMSD less than 3 Å. It should be noted that there was no bad
ligand positioning (with RMSD more than 3 Å) by the SOL
program for LpxC, urokinase, CDK2, and CDK2-CICLINA
proteins, while ligand positioning quality for Chk1 and Erk2
proteins by the SOL program was significantly worse.

Competition organizers assessed inhibition activity pre-
dictions by area under the curve (AUC) value. AUC is
an area under the receiver operating characteristic (ROC)
curve, which illustrates dependence of true positive rate
on false positive rate, and thereby demonstrates quality of
prediction method: AUC is equal to 1 in case of ideally
accurate prediction and AUC is equal to 0.5 in case of the
worst prediction. The SOL program shows high prediction
quality of inhibition activity for LpxC protein (AUC = 0.95)
and for urokinase (AUC = 0.97) and low prediction quality
for Chk1 protein (AUC = 0.51).

The analysis of the SOL program results from the CSAR
competition indicates that such a failure in ligand positioning
and—as a consequence—failure in inhibition activity predic-
tion may be the result of the inadequate protein flexibility
model (potentials grid with broadening) and inaccurate
solvent model. Nevertheless, the SOL program, despite its
imperfection, took one of the first places in the CSAR 2011-
CSAR 2012 competition [34].

2.3. Postprocessing: The DISCORE Program. As described
above, there are some simplifications in the SOL program
and there are false positive and false negative results of

inhibition activity prediction, even in the cases of good
ligand positioning. So, it is necessary to make protein-
ligand potential energy function and scoring function more
accurate. For this purpose, we developed postprocessing
programs [34] to refine ligand positioning and, first of all,
scoring from the SOL program through elimination of the
SOL program simplifications. Scoring improvement during
post-processing naturally involves two aspects:

(1) ligand local optimization by L-BFGS [44] algorithm,
starting from ligand binding position obtained from
the SOL program, with taking into account solvent
and explicit mobility of some protein atoms. Potential
energy is calculated by MMFF94 force field without
any simplifications. Solvation energy is calculated
by one of three continuum solvent models (SGB,
COSMO, or PCM) [45, 46].This optimization, as well
as the final binding energy component calculation is
performed by the DISCORE program [34];

(2) Scoring function coefficients adjusting by reliable
experimental inhibition constants. This adjusting can
be made specifically for the target-protein or for a
generalized set of proteins.

Binding free energy (scoring function) is calculated by (1)
in the postprocessing programs:

Δ𝐺bind = 𝑘1Δ𝐺Coulomb + 𝑘2Δ𝐺VdW + 𝑘3Δ𝐺pol + 𝑘4Δ𝐺np

+ 𝑘
5
Δ𝐺LS + 𝑘60.33𝑁TORS + 𝑘7Δ𝐺rot-tr,

(1)

whereΔ𝐺Coulomb andΔ𝐺VdW are Coulomb andVan derWaals
direct interaction energies in the frame of MMFF94 force
field, Δ𝐺pol and Δ𝐺np are polar and nonpolar components
of desolvation energy, Δ𝐺LS is the ligand strain energy,
0.33(kcal/mol ∗ torsion) × 𝑁TORS is the entropy component
caused by freezing of the ligand torsion degrees of freedom
in binding process,𝑁TORS is the number of the ligand torsion
degrees of freedom (number of single acyclic bonds, rotating
heavy atoms), Δ𝐺rot-tr is the free energy component caused
by loss of the ligand rotational and translational degrees of
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freedom in binding process [47], and 𝑘
𝑖
(𝑖 = 1, . . . , 7) are the

unitless adjustment coefficients.
Coefficients 𝑘

𝑖
are adjusted by minimizing differences

between calculatedΔ𝐺bind and experimental binding energies
(from articles or our experiments) determined using experi-
mental inhibition constant by formula Δ𝐺 = 𝑅𝑇 × ln(𝐾

𝑖
).

The GFIT program [34] is developed for this adjusting,
which is made by iterative minimization of mean square dif-
ferences between calculatedΔ𝐺bind and experimental binding
energies.

We also have the possibility to show the postprocessig
results (not only docking results) during the CSAR compe-
tition [34] to check the quality of the DISCORE program.
So, the DISCORE program results were also presented at
the competition and compared with the results of other
groups. Unfortunately, inhibition activity prediction by the
DISCORE program has improved prediction by the SOL
program, not for all proteins. Ignoring cases with bad initial
positioning by the SOL program (so improvement of this
positioning and scoring could not be made by the DISCORE
program), there were designated two major reasons of low
postprocessing quality: poor solvent model parameterization
and very simple empiric entropy calculation (by counting of
the ligand torsions) both in the SOL andDISCOREprograms.

2.4. Quantum Chemistry. Quantum chemistry methods are
another important molecular modeling tool. Strictly speak-
ing, exact calculation of intermolecular interactions can be
done only with quantum chemistry, so quantum chemistry
application in the drug design can significantly improve
accuracy of calculations. But quantum chemical calculations
require a lot of memory (both RAM and HDD) and a lot of
CPU time: a system with tens atoms can be being processed
within ten hours at one CPU. So, ab initio quantum chemistry
methods cannot be applied to proteins. But semiempirical
quantum chemistrymethods are not so resource-demanding.
In this work, we used the MOPAC package of semiempirical
programs [48] developed by Stewart. Today, it is one of
the fastest and most undemanding quantum chemical pro-
grams. Traditional quantum chemistry methods, including
semiempirical methods, use some matrix algebra methods
with complexity of 𝑂(𝑁3), where𝑁 is a number of atoms, so
it is impossible to process system of more than 1000 atoms by
these methods. But with the implemented MOPAC package
localized molecular orbitals (LMO) method, equations of
self-consistent field can be solved by 𝑂(𝑁) operations. Also,
there are speedups of other resource-demanding stages of
calculations, so the MOZYME module [49] of the MOPAC
package allows processing a systemof 15 000 atoms, including
proteins and protein-ligand complexes.

In this work, we calculated protein-ligand binding ener-
gies for urokinase by the PM7 [50] parameterizationmethod,
implemented in the MOPAC package. Corrections for inter-
molecular interactions (dispersion interactions, hydrogen
bonds, and interactions with halogens) [51–54] were taken
into account in the PM6-DH2X and PM7 parameterizations.
Before binding energy calculation, all ligand atoms and some
protein atoms (about 10–15 amino acids of the active site)

were locally optimized with L-BFGS method, implemented
in the MOPAC package. Solvent (COSMOmodel) was taken
into account only for binding energy calculation, not during
optimization. Semiempirical methods, despite of all their
speed, were lost in accuracy ab initiomethods for a long time,
because of their poor nonvalence interactions modeling,
particularly, dispersion interactions and hydrogen bonds.
And underestimation of repulsion forces leads to overstating
of interaction energies and, as consequence, decreasing of
distances between atoms in the equilibrium state. However,
additional empirical corrections are solving this problem. As
a result, the PM6 parameterization method with hydrogen
interaction corrections has accuracy better than 1 kcal/mol
(by interaction energies in the test set S22 including 22
molecules [51]). The PM6 method with dispersion interac-
tions corrections and interactions with halogens corrections
differs from ab initio methods by less than 10% in energy
calculations of interactions with halogens. Semiempirical
methods with all these corrections can reach accuracy of
the DFT-D (DFT including semiempirical dispersion inter-
actions) methods in most cases, but these semiempirical
calculations can be done faster by three orders [53].

All of these corrections are included into the latest param-
eterization method in the MOPAC package, PM7 method,
which is modified PM6 method. The PM7 parameterization
is based on experimental and high-level ab initio data.
Also in the PM7 parameterization method, two insignificant
mistakes are fixed, which appear in large system processing.
This has significantly improved the accuracy of large organic
systems and solids calculations.

2.5. Generalized Direct Docking: The FLM Program. De-
scribed above methods use only one ligand position in
the protein active site (the position of the potential energy
global minimum) to calculate protein-ligand binding energy.
But a ligand in thermodynamic equilibrium state can be
continuously transforming from one binding pose to another
due to the thermal motion of its atoms. Binding is not a static
event, but a dynamic process [55–58]. Thus, protein-ligand
binding free energy calculation can be improved with taking
into account multiple poses both of a bound ligand and of
a free ligand. Besides, the protein-ligand binding constant
depends not only on potential energy but on free energy,
consisting of enthalpy and entropy, which can be calculated
more realistically through ligand movement accounting.

Free energy 𝐺 can be derived from statistical sum 𝑍 by
(2) [59]:

𝐺 = −𝑘𝑇 ln (𝑍) . (2)

Low-energy states make major contribution to the sta-
tistical sum, so not only the global energy minimum, but
also local energy minima, close to the global minimum in
terms of energy, and contribute to the free energy. The Find
Local Minima (FLM) program of direct gridless docking was
developed on the basis of this assumption.The FLM program
searches local minima of the protein-ligand complex and
the free ligand by the Monte-Carlo method: random torsion
deformations and random rotations-translations are applied
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to the ligand, and then ligand is locally optimized by the L-
BFGS algorithm. Performance of a lot of such independent
local optimizations results in determination of a set of local
minima. Up to 1024 different local minima with the lowest
potential energies are being kept in this set. After the local
minima search is completed, each of the local minima is
approximated by harmonic oscillator (approximation based
on the potential energy hessian), and its natural frequencies
are calculated. So, statistical sum 𝑍𝑖 over the 𝑖th local mini-
mum configurational space and corresponding free energy𝐺𝑖
can be calculated by (3) as follows:

𝐺
𝑖
= −𝑘𝑇 ln (𝑍𝑖) = −𝑘𝑇 ln (𝑒−𝐸

𝑖

0
/𝑘𝑇
∗ 𝑍
𝑖

V ∗ 𝑍
𝑖

𝑡
∗ 𝑍
𝑖

𝑟
)

= 𝐸
𝑖

0
+ 𝐺
𝑖

V + 𝐺
𝑖

𝑡
+ 𝐺
𝑖

𝑟
,

(3)

where 𝐸𝑖
0
: potential energy of the 𝑖th local minimum, 𝑍𝑖V, 𝑍

𝑖

𝑡
,

and 𝑍𝑖
𝑟
: statistical sum components over the 𝑖th local min-

imum configurational space associated with the vibrational
[60], translational, and rotational [47] degrees of freedom
respectively, and 𝐺𝑖V, 𝐺

𝑖

𝑡
, and 𝐺𝑖

𝑟
—corresponding free energy

components.
Then, the total statistical sum 𝑍 and corresponding free

energy 𝐺 can be calculated with taking into account many
local minima by (4) as follows:

𝐺 = −𝑘𝑇 ln (𝑍) = −𝑘𝑇 ln(∑
𝑖

𝑍
𝑖
) = −𝑘𝑇 ln(∑

𝑖

𝑒
−𝐺
𝑖
/𝑘𝑇
) .

(4)

We named this approximation as “multiwell approxima-
tion.”

One of the FLM program features is the absence of
adjusting coefficients: all energy calculations are performed
directly by theMMFF94 force field, whenmost of the docking
programs calculate scoring function with nonphysical coeffi-
cients or even not in energy units.

In this work, the FLM program was used as a next
step of the docking improvement and of the binding energy
calculation improvement. We named docking procedure in
the FLM program as a “gridless, direct, generalized” docking
by these reasons: docking is “gridless” because the protein
potentials grid is not used (unlike the SOL program andmost
of other docking programs); docking is “direct” because all
energy calculations were performed directly in the MMFF94
force field without any adjusting parameters; and docking
is “generalized” because many low-energy local minima, not
only the one global energy minimum, are found and pro-
cessed during calculations. Also, the FLM program searches
for minima of the free ligand, not only for minima of the
protein-ligand complex, unlike what most of the docking
programs do. This allows to take into account the ligand
deformation energy (or the ligand strain energy)—energy
of the ligand deformation from its free conformation to
its bound conformation—which is included to the protein-
ligand binding energy. Our computations show that this
deformation energy can vary from a few to tens of kcal/mol,
so its accounting is important for binding energy calculations.

2.6. Experimental Technique of Urokinase Inhibition Testing In
Vitro. After selection of the most promising candidates for
new urokinase inhibitors, we tested their inhibition activities
in vitro. The experiments were carried out on the system
with the urokinase specimen, the tested ligand, and the
special substrate—a synthetic Pyro-Glu-Gly-Arg-pNA pep-
tide (S-2444) [61, 62]. Urokinase decomposes the substrate
with production of the chromogenic product. When the
inhibitor binds to the urokinase active site, this production
is slowed down. The higher the inhibition activity of the
ligand, the slower theworking of urokinase and the slower the
accumulation of chromogenic product. Thus, the inhibitory
activity can be measured by the rate of optical density
change at the 405 nm wavelength. The suggested method
of the inhibitory activity measurement is suitable to obtain
inhibition percentage, EC

50
, IC
50
. Error of the method for

IC
50
measurement in micromole range is about 7–10 𝜇M.

3. Results and Discussion

3.1. Docking Results of the Native Protein-Ligand System:
Docking Quality Validation. The validation of the docking
program quality is a way to estimate whether it positions
native ligands correctly into the active site of the target-
protein as well as to evaluate accuracy of the protein-ligand
binding free energy calculation.The correct docking program
enables to find true inhibitors among a large number of
inactive compounds. The validated program is the docking
program SOL. The native ligands (for particular target-
proteins) are the ligands whose binding poses in the active
site of the target-protein are known from experiments.

The quality positioning is defined by root mean square
deviation (RMSD) between all atoms of native ligand poses
and docked ligand poses. We calculated 45 native protein-
ligand complexes taken from Protein Data Bank. The com-
monly assumed docking quality gradation is “excellent” in the
case of RMSD < 1 Å, “good” in the case of 1 Å < RMSD < 2 Å,
“satisfactory” in the case of 2 Å < RMSD < 3 Å, and “bad”
in the case of 3 Å < RMSD. Distribution of the native ligand
docking results (absolute and relative quantities) by quality
is shown in Table 1. As it can be seen from Table 1, most of
the native ligand docking results (80%) have “satisfactory” or
better quality.

The quality of the urokinase-ligand binding free energy
prediction was also tested by comparing predicted energies
with the experimental data. We have found urokinase inhi-
bition constants 𝐾

𝑖
for all 45 native ligands from various

literature sources, and then we transformed these inhibition
constants to the binding free energies by formula Δ𝐺 = 𝑅𝑇×
ln(𝐾
𝑖
). Then, the predicted binding energies were correlated

with the experimental binding energies. In addition to the
continuous energy values correlation, we also tested corre-
lation of a binary classification (“inhibitor”-“noninhibitor”)
between calculated and experimental results. A ligand is
classified as “inhibitor” in the case of 𝐾

𝑖
< 10 𝜇M for the

experimental data and in the case of SCORE < −5.5 kcal/mol
for the calculated data. Correspondingly, a ligand with 𝐾

𝑖
>

10 𝜇M is classified as an experimental “non-inhibitor,” and
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Table 1: The native ligand positioning quality by the SOL program
for urokinase protein.

RMSD range Number of the native
ligands

Percentage of the
native ligands

RMSD > 3 Å 9 20%
RMSD < 3 Å 36 80%
RMSD < 2 Å 21 47%
RMSD < 1 Å 5 11%

Table 2: Correlation coefficient between predicted and experimen-
tal binding energy values and numbers of “false positive” and “false
negative” results. Predicted results are calculated by the SOLdocking
program for the 45 native ligand-urokinase complexes.

Correlation
coefficient 0.35

“false positive”
number 2 Total of 9 mismatches out of 45 results
“false negative”
number 7

a ligand with SCORE > −5.5 kcal/mol is classified as a
predicted “non-inhibitor.” Amismatch between experimental
and calculated classification is called “false positive” (FP,
when ligand is an experimental “non-inhibitor,” but predicted
as “inhibitor”) or “false negative” (FN, when ligand is an
experimental “inhibitor,” but predicted as “non-inhibitor”).
The numbers of such mismatches and the continuous ener-
gies correlation coefficient for the tested ligands are shown in
Table 2.

For the conjectural inhibitors selection from a big
database and their subsequent experimental synthesis and
verification, first of all, it is necessary to decrease a “false
positive” number. We tried to use postprocessing procedure
to improve prediction quality and decrease numbers of “false
positive” and “false negative” results.

Another way to estimate docking quality, with focus on
ability of the active inhibitors selection, is the enrichment plot
(E-plot) and enrichment value (𝑆

𝐸
) [63], where the latter is

the area under the E-plot. This plot represents the relative
number of known, real inhibitors (normalized by the total
number of known, real inhibitors found in the whole set
of ligands under consideration) plotted as a function of the
number of top-scoring compounds needed to include those
inhibitors. For example, if 8 (known) real inhibitors are found
among the 2000 test compounds and the top 200 of these
compounds include 4 real inhibitors, then the corresponding
E-plot point has coordinates in percent of (𝑥 = 10, 𝑦 = 50)
because 200/2000 = 0.10 and 4/8 = 0.50. The area 𝑆

𝐸
below

E-plots can be used to quantify the observed enrichment of
real inhibitors. Enrichment values 𝑆

𝐸
greater than 0.9 are

excellent, and enrichment values 𝑆
𝐸
below 0.6 represent no

enrichment [63].
The E-plot can be obtained by the next algorithm: (1) list

of all ligands is sorted by scoring function; (2) first𝑁 ligands
are selected from this list, and 𝐾 ligands of them are active
inhibitors; (3) the point (𝑁/𝑁all, 𝐾/𝐾all) is plotted, where𝑁all

0
0.2
0.4
0.6
0.8

1
1.2

0 0.2 0.4 0.6 0.8 1

Figure 2: Enrichment plot by the SOL docking program: the 7
active urokinase inhibitors are selected from the 1888 assumed to
be inactive ligands of the NCI Diversity database. Enrichment value
is equal to 0.98.

is the total ligands number in the dataset and 𝐾all is the total
active inhibitors number in the dataset. Steps (2) and (3) are
repeated with 𝑁 varied from 0 to 𝑁all. The closer the 𝑆

𝐸
to

value 1, the better quality of the docking program.
The E-plot for the 7 active urokinase inhibitors (amiloride

[64], B428 [20], uk122 [21–31], wx-uk1 [21–31], wx-293-t
[21–31], wx671 [21–31], and B623 [20]) selection from the
1888 ligands of the NCI Diversity database [65] by the SOL
program score is shown in Figure 2. All 1888 ligands of the
NCI Diversity database have been assumed to be inactive.

The docking program with such a high 𝑆
𝐸
of 0.98 is

considered to be very effective for the active inhibitors
selection from a large set of inactive ligands. It should be
noted, however, that there can be other unknown urokinase
inhibitors among the 1888 ligands of the NCI Diversity
database, because these ligands have not been experimentally
tested for urokinase inhibition: the true 𝑆

𝐸
can differ from

specified value of 0.98. So, the SOL docking programhas both
good quality of ligand positioning in the urokinase active site
and good quality of separation active urokinase inhibitors
from inactive.

Also, we estimated influence of the urokinase structure on
the docking results by crossdocking procedure—the docking
of the ligand from one PDB complex into the protein
from another PDB complex. In other words, crossdocking
procedure demonstrates effect of the protein flexibility on the
protein-ligand binding process. Score of the protein-ligand
binding for the protein and ligand of the same PDB complex
varies within the average of 1 kcal/mol with the protein
structure change. It indicates some urokinase flexibility in the
binding process, but this effect can be neglected.

Then, we have chosen the urokinase structure (1SQOpro-
tein from the PDB [66]) for subsequent calculations: dock-
ing by the SOL program, postprocessing by the DISCORE
program, quantum chemistry calculations by the MOPAC
package, and generalized docking by the FLM program.

3.2. Docking: Virtual Screening Databases Containing Ready
Compounds. Search of the uPA inhibitors in ready-made
compounds databases is the firststage of the new inhibitor
development. The technique of virtualscreening can be
summarized as the following: we choose the database of
drug-like compounds, which have been already studied as
potential drugs with respect to some other target-proteins
and have been already synthesized, so small amounts of
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Table 3: Adjustment coefficients of formula (1), determined using the GFIT program GFIT and the training set of 50 uPA-ligand complexes.

𝑘
1

𝑘
2

𝑘
3

𝑘
4

𝑘
5

𝑘
6

𝑘
7

0.0292 0.1295 0.2437 −0.0438 0.4958 0.2597 0.0393

Table 4: Comparison of correlation coefficients and numbers of false positives and false negative results (a total of 88 complexes) for the SOL
program and the DISCORE program trained by 50 uPA-ligand complexes.

Correlation coefficient Number of false positives Number of false negative
SOL docking 0.35 26 of 88 7 of 88
DISCORE postprocessing (training set) 0.58 8 of 50 3 of 50
DISCORE postprocessing (test set) 0.52 9 of 38 4 of 38
DISCORE postprocessing (all complexes) 0.55 17 of 88 7 of 88

Table 5: Adjustment coefficients of formula (1), determined using
the GFIT program GFIT and the training set of 88 uPA-ligand
complexes.

𝑘
1

𝑘
2

𝑘
3

𝑘
4

𝑘
5

𝑘
6

𝑘
7

0.0387 0.1387 0.1162 −0.0188 0.1081 0.0504 0.0322

Table 6: Comparison of correlation coefficients and numbers of
false positives and false negative results (a total of 88 complexes) for
the SOL program and the DISCORE program trained by 88 uPA-
ligand complexes.

Correlation
coefficient

Number of
false positives

Number of
false negative

SOL docking 0.35 26 of 88 7 of 88
DISCORE
postprocessing
(training set)

0.59 10 of 88 8 of 88

these compounds can be ordered for experimental tests either
free of charge or at small price. Then, we perform docking
of the compounds from the database into a given target-
protein and select, if any, the candidate inhibitors, which are
ordered and tested in experiment. If inhibitory activity of
compound is confirmed in experimental tests, it serves as a
basis for design of new patented inhibitors. In addition to
experimental confirmation of inhibitory activity predictions
by docking programs and to validation of the experimental
test systems, this procedure makes it possible not only to find
out new molecular groups, which form inhibitors and play
an important role in binding with target-protein, but also to
discover a new application of the known compounds.

In our research, we have started from ZINC [67] data-
base, which is the library of the compounds prepared for
docking and provided by various suppliers from all over
the world. About 800 thousands of compounds from the
“lead-compound” set (small compounds which can be used
as a basis to construct more heavy-weighted inhibitors)
were docked. Calculations were carried out using parallel
mode of “LOMONOSOV” supercomputer (MSU). Then, we
ranged compounds by scoring function and analyze the
ones which are in top positions and have scoring functions
< −5,5 kcal/mol. We explore the potential for order taking

into account our facilities to order compounds and came
in contact with Russian databases, such as ACB-Blocks [68]
and Vitas-M [69], and 43 compounds have been ordered.
Also, two compounds were obtained from our colleagues
and one compound was obtained from Alfa Aesar database.
All these compounds were tested experimentally, and 14
compounds displayed some inhibitory activity (IC

50
∼200 𝜇M

is the best result). These both positive and negative results
were used during the next stages of the new uPA inhibitors
development. We also perform docking of 1888 compounds
fromNCIDiversity [65] and expect that large ligandswill give
better results in experimental tests than small ligandswith the
same scoring functions. However, the selected compounds
were not ordered because of technical problems. Those 23
compounds which are in top positions by SOL scoring
function are presented in Table S2 in SupplementaryMaterial
available online at http://dx.doi.org/10.1155/2014/625176.

3.3. Postprocessing. In order to carry out training and testing
of the postprocessing program, we divide 88 available com-
pounds (45 native compounds and 43 compounds ordered
from databases) into two sets: training set (50 compounds)
and test set (38 compounds) in the way that there are both
active and inactive ligands in each set. Then, the adjustment
coefficients for energy components of the scoring function
were determined using the GFIT program (Table 3), and the
corrected scoring function values were calculated for two
sets accounting these adjustment coefficients. On the basis
of these calculations, numbers of false positives and false
negative were estimated again, and the correlation coefficient
with experimental data was also calculated (Table 4).

It can be seen from Table 4 that the postprocessing
application increases significantly the correlation coefficient
between calculated and experimentally measured protein-
ligand binding energies and decreases appreciably number of
false positives predictions.

A next step was to train theDISCORE program by total of
88 available uPA-ligand complexes to perform further search
of the new inhibitors (Tables 5 and 6).

Number of false positives decreases more in this case
while the correlation coefficient between calculated and
experimental data is still rather high. Clearly, if the com-
pounds, which are selected on the basis of docking results, are
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to be synthesized, then we should strive for the least number
of false positive ligands. The postprocessing DISCORE pro-
gram and the adjustment of the appropriate coefficients help
to decrease empirically the number of false positives in this
case.

According to the calculations performed using the DIS-
CORE program, we also can suggest that low correlation
coefficient between experimental and calculated energies
obtained using the SOL program may result, first, from
insufficiently accurate accounting of entropic component of
binding free energy in SOL scoring function, second, from
the simplified accounting of the solvation energy and, thirdly,
from the absence of the ligand local optimization into the
found global minimum.

3.4. MOPAC. MOPAC software makes it possible to perform
the local optimization over the selected atoms of the molecu-
lar system, so at the first of calculations there was an attempt
to optimize not only ligand in the protein active site but also
the protein amino acids that are nearest to it. 10–15 such
amino acids were chosen, that increased the calculation time
more than twice, but the final binding energies only slightly
changed (by an average of 5%), that also did not affect the
correlation with the experimental data. So, the decision was
made to perform the optimization over the ligand atoms only.

We also consider the versions of the optimization per-
forming in solvent (COSMO) and in vacuum. It was demon-
strated that the optimization in solvent did not improve the
final results but increases significantly the calculation time,
so the decision was made to account the solvent at the last
optimization step only.

The above calculation parameters were tested using 8
native urokinase-ligand complexes from the PDB Database,
chosen so that there were inhibitors of different size and
activity among them. The correlation coefficient between
binding energies obtained by MOPAC and experimental
binding energies is 0.68 (for 8 tested complexes), but any
additional adjustable parameters have not been used. The
correlation coefficient between binding energies obtained by
SOL and experimental binding energies is 0.6 for the same
complexes, but there are some empirically chosen parameters
in the SOL score. The additional calculations by MOPAC
using both active and inactive ligands enabled us to choose
threshold enthalpy value, which makes it possible to separate
the compounds potentially active. For urokinase ligands, this
value equals −40 kcal/mol.

This suggests that including quantum chemistry into the
binding free energy computing process can improve the
precision of the calculations without using the additional
adjustable parameters, which are presented in the scoring-
functions of the SOL program as well as of the DISCORE
program. However, since time required for the calculation
of one complex varies from one to ten hours, the quantum
chemical virtual screening of databases containing tens and
hundreds of thousands of compounds is still unrealizable
now.

3.5. FLM and the Multiwell Approximation. The set of 8
urokinase-ligand native complexes from the PDB Database

for the FLM program calculations has been chosen. The
time required to perform the calculations depends on the
size of the ligand. It takes less than 1000 CPU∗hours to
find the minimum nearby the global minimum for the
simple ligands of the size which is not more than 5 torsions.
We consider that the global minimum is found when the
pool of minima with the lowest energies stops accepting
new local minima. However, for the large ligands (about
17 torsions), the calculation lasts about 20000 CPU∗hours
without attainment of the selected local minima saturation.

The local minimumwith the lowest energy is also close to
the native ligandposition (RMSD< 3 Å) for 6 complexes from
8. For the other 2 complexes program finds the minimum
nearby the native ligand position by RMSD, which also has
low energy, but which is different from the global minimum.
Generally speaking, the native ligand position is not forced
to correspond to the global minimum of the protein-ligand
system potential energy. Several factors can influence on
such result: inadequate description of the protein-ligand
interaction energy in the model system (e.g., in our case
minima search was performed without solvent), inadequate
description of the intermolecular interactions by the force
field used, or the random perturbations during the complex
crystallization process.

Further, potential binding energywas computedusing the
FLM program, and bymeans of this energy enthalpy, entropy
and binding free energy were determined. Calculations were
carried out without solvent, and the correlation coefficient
between calculated energies and experimental values was 0.5.

As it was mentioned above, the quantum chemical cal-
culations can be perspective to find accurate protein-ligand
binding energies. So, we undertook the following step: we
performed enthalpy calculations by MOPAC for the global
minimum found using FLM in two variants using local opti-
mization of the global minimum of the ligand in the protein
and without local optimization. Correlation coefficients with
experimental values are 0.46 and 0.44, respectively. However,
it should be taken into account that in this case the enthalpy
calculation using MOPAC is only performed for only one
minimum with the lowest energy, but as it was mentioned
before the lowest energy position has RMSD > 3 Å from the
native ligand position in the protein for 2 ligands from 8.
Entropic contribution of the binding free energy was not
also taken into account in this case. These two features can
negatively affect the correlation between MOPAC enthalpies
and experimentally determined binding free energies.

3.6. Rational Design and Experimental Testing of New uPA
Inhibitors. All ordered compounds (50 compounds) were
tested experimentally in vitro using procedures described
in “Methods.” Compounds which display activity, their IC

50

values, and also calculated binding energies using programs
SOL, DISCORE, and MOPAC are presented in Table S2
in Supplementary Materials, and the some characteristic
representatives are presented in Table 7.

Besides the validation of experimental activity for com-
pounds, selected by virtual screening calculations, we also
suggested several scaffold-like molecules for the synthesis as
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Table 7: Structures, docking, and postprocessing score results,MOPAC enthalpies, and experimental uPA inhibition activity (IC50) of ordered
compounds.

Number ID and database
name Structure SOL score,

kcal/mol
DISCORE score,

kcal/mol
MOPAC score,

kcal/mol
Experiment,
𝜇M

1 TRY-0074
(ACB-blocks)

O

N
H

NH2

−7.04 −4.69 −55.28 260

2 AIM-0027
(ACB-blocks)

F
N
H

N

NH2

−4.34 −4.94 −60.89 ∼500

the potential uPA inhibitors. The structures of synthesized
compounds are presented in Table 8 together with bind-
ing scores calculated using programs SOL, DISCORE, and
MOPAC.These scores were used separately, and the “consen-
sus” score was not used, because we found thatMOPAC score
predicted activities much better than MMFF94 force field,
and there is no sense to combine it with SOL and DISCORE
scores. However, we cannot abandon the latter two scores,
because they are available in the virtual screening of many
compounds.

All these compounds contain the positive-charged frag-
ment (amine, guanidine, and thiouronium), which can inter-
act with Asp189 residue in the uPA active site.

There are several points, which we wish to address by
the validation of these synthetic structures in experiment.
First of all, it was interesting to substitute the guanidinium
charged group by thiouronium fragment in well-known
structure of guanidinium-containing uPA inhibitors [23, 64].
This substitution seems to work well in design of thrombin
inhibitors [70], but, from Table 8, it is evident (compounds
1–3) that, in the case of uPA, the thiouronium-containing
compounds turned out to be completely inactive, whereas
their guanidinium counterparts have significant activity [23,
64]. Because thrombin and uPA have similarity in their active
sites structures, the reason of such behavior remains unclear.

Thenext set of inhibitors (compounds 4–15 inTable 8) can
be considered as modifications of known structures of uPA
inhibitors: 2-aminobenzimidazole and 2-aminoquinoline
[64, 71]. The docking experiments verified that such mod-
ifications can provide the reasonable fit of selected com-
pounds with uPA active site. Despite this promises, all the
synthesized compounds are of little interest as uPA inhibitors.
An additional activity was performed by synthesizing the
compounds 16–18 (Table 8), which can be regarded as
simplified and “cyclized” amiloride [64] structures. In this
case, the compounds display substantial activity, especially
the sulfur-containing substituted 1,2-benzisothiazoles. The
favoring influence of sulfur may be due to the enhanced
Van der Waals interaction with the uPA active site. The
insertion of bromine into position 5 of 1,2-benzisothiazole
ring (which corresponds sterically to chlorine position in
amiloride molecule) also enhances the activity, signifying the

importance of bulk electron deficient substituent at this site.
Finally, the 3-guanidino-1,2-benzisothiazole can be regarded
as new patent-free scaffold, which is the good starting point
for subsequent design of new uPA inhibitors.

As a result, there are 8 active compounds between 18
synthesized compounds, though their activities are generally
weak. IC

50
of six compounds is equal to 200𝜇M and more.

Among substances, which we synthesized for urokinase
inhibition tests, the two most active were 1,2-benzisothiazol-
3-ylguanidine (IC50 = 33 𝜇M) and its 5-bromo derivative
(4–20𝜇M). The specific interactions of the U026R with
the aminoacids of the urokinase binding site are shown in
Figure 3.The electrostatic interactionwith theAsp189 and the
formation of the hydrogen bonds with Gly219 and Ser 190 can
be marked out.

They were obtained from the corresponding chlorides
via prolonged heating with excess ethanolic guanidine. (A
synthesis scheme is presented in Scheme 1 and in Sup-
plementary materials). It should be noted, however, that
all these compounds including the most active ones are
small structures, which can be enlarged by addition of new
substitutes, which may affect the activity either positively or
negatively.

Experimental tests were performed as indicated in para-
graph 3.5 of “Methods.” Urokinase proteolytic activity in
the presence of inhibitor (and also in absence of inhibitor,
labeled “control” in Figure 4) was determined by releasing the
paranitroanilide by means of measuring of absorption with
a wave length of 405 nm each minute at 30∘C. Figure 4 is
a diagram of relationship between optical density and time.
The angle of curve describes the reaction rate: the lower it
is (compared with “control”, which corresponds to urokinase
without inhibitors), the better inhibitor works.

4. Conclusions

This work focuses particularly on the initial rational drug
design process, development of new inhibitors the tar-
geted the specified proteins using the molecular modeling
techniques and supercomputer-based calculations: basis of
the target-protein choice, building of the molecular model,
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Table 8: Structures, docking, and postprocessing score results, MOPAC enthalpies and experimental uPA inhibition activity (IC50) of
synthesized compounds. N.b.: non binder.

Number ID Structure SOL score,
kcal/mol

DISCORE score,
kcal/mol

MOPAC score,
kcal/mol

Experiment,
𝜇M

1 U002R
S

NH

NH2
−4.73 −3.32 −47.12 n.b.

2 U001R
N S

NH

NH2

−4.62 −4.39 −48.29 n.b.

3 U007R
N S

NH
Br

NH2

−4.86 −4.71 −44.56 n.b.

4 U003P
NH2

N
−4.59 −3.99 −49.51 n.b.

5 U005r N
H

N

NH2

−5.04 −4.76 −59.86 500

6 U006R O O

N
NH2

−4.73 −4.74 −13.55 n.b.

7 U009T

S

N
NH2

−7.14 −7.22 −44.09 n.b.

8 U012T O
O

N
Cl

Cl

NH2

−6.91 −5.24 −56.68 n.b.

9 U013T O
O

N

NH2

−7.62 −5.08 −37.91 n.b.

10 U014R
N

N
H

H2N

NH2 −4.15 −4.25 −54.76 200

11 U014aR

N

N
H

O2N

NH2 −4.57 −4.14 −49.69 n.b.
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Table 8: Continued.

Number ID Structure SOL score,
kcal/mol

DISCORE score,
kcal/mol

MOPAC score,
kcal/mol

Experiment,
𝜇M

12 U015R

N
H

NN
H

S
O O NH2

−4.13 −4.64 −64.69 n.b.

13 U017R
N
H

NN
HO

NH2 −4.15 −4.45 −60.80 200

14 U019R
N
H

NO

NH2
−4.21 −4.08 −53.54 500

15 U020R
N
H

NF

NH2 −4.02 −3.21 −49.54 500

16 U021R

N
H

N

N
H

NH

NH2

−4.74 −5.50 −61.59 500

17 U024R

S
N

N
H

NH

NH2

−5.10 −5.51 −59.94 33

18 U026R

S
N

N
H

NHBr

NH2

−5.56 −5.85 −61.61 4–20

screening of ready-made compounds databases using dock-
ing and postprocessing programs, and selection of the best
inhibitor candidates based on the calculations results and
checking their correspondence to experimental data, new
compounds design, their synthesis, and experimental testing.

Particular effort wasmade to investigate different docking
methods and protein-ligand binding energy computation
methods. Additional researches have discovered that the
potential binding energies of the free protein, free ligand,
and their complex global minima are the key values when
comparing binding energies of different ligand to select the
best or the worst inhibitor, while accounting many local
minima near the global one and molecules oscillations in
these minima play the role of correction for the potential

energies. Accounting of rotations and translations leads all
energies to change by about the same amount, so it also plays
the role of a small correction when comparing binding free
energies of two ligands.

It was shown that the correlation between theory and
experiment can be increased using the recently developed
quantum chemical semiempirical parameterization method
PM7 focusing on the description of the intermolecular inter-
actions that is more accurate than in previous semiempirical
methods.

Further development is likely associated with more con-
sistent and accurate accounting of solvent, with more regular
globalminimumsearch andnearby localminima search,with
more accurate potential energy calculations: using quantum



BioMed Research International 13

Gly219

H3C

CH3

O

H

N

HNH H

O
CH3

Ser190

Asp189O

O−

CH3

Br

S
N

NH2

+

Figure 3: Specific interactions of the U026R with the aminoacids of
the urokinase binding site.
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Scheme 1: A synthesis scheme of 1,2-benzisothiazol-3-yl-guanidine
(U024R) and (5-bromo-1,2-benzisothiazol-3-yl) guanidine
(U026R).

chemicalmethods or other alternative toMMFF94 force field,
and with accounting the mobility of atoms in the protein
active site.

Since development and application of the previously
mentionedprograms for computermodelingwere carried out
simultaneously with the new inhibitors search, the calcula-
tion results for some compounds have been obtained after
their synthesis and experimental tests, and thus it became
additional quality estimation criterion for these programs.
So, for example, the postprocessing gave quite good results
for native ligands at the first stage of development, but it
predicts activity worse than SOL docking program for the
synthesized ligands. Probably this is associatedwith defects of
MMFF94 force field, with too rough calculations of entropy
contribution, and also with using of empirical adjustment
coefficients.

In contrast to the postprocessing based on MMFF94
force field, the quantum chemical calculations have shown
better results than the docking program SOL. The correla-
tion between experimental data and energies computed by
MOPAC for our synthesized ligands is 0.52. So, we can put
forward the suggestion that employment of the semiempirical
quantum chemistry PM7 method with docking allows not
only to divide ligands into “bad” and “good” but also to
separate “good” inhibitors from “satisfactory” ligands and
“very good” ligands.
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Figure 4: Inhibition of uPA proteolytic activity by U024R and
U026R (50 𝜇M) was measured by decomposition of the specific
chromogenic substrate S-2444.

As a result of the performed research, 18 novel com-
pounds were designed, synthesized, and tested in exper-
iments, and two of them have demonstrated inhibiting
activity ∼10 𝜇M. These compounds can be the basis for the
further drug development and for obtaining the uPA leader
inhibitors, which are perspective in terms of design of the
new chemical class of antitumor drugs.This requires not only
to increase new inhibitors activity at least by an order of
magnitude but also to improve significantly the accuracy of
in vitro inhibitory activity measurements.
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